
Critique 1 – Integrative Network Reconstruction 

Problem Overview 

Addressed in these papers is the task of integrating various sources and types of data within a network inference 

algorithm. Network inference is an important task, and the authors of these papers make note of its relevance in 

diverse areas such as understanding gene expression, cell function, disease, and cell and organismal responses to 

new environmental conditions. Despite its importance, network inference remains a technically challenging task.   

The Methods 

1. Robust data-driven incorporation of prior knowledge into the inference of dynamic regulatory networks 

(Greenfield et al.) – In this paper, the authors make note that most previous network reconstruction methods only 

make use of gene expression data and occasionally other proteomic measurements, but cite an increase in the 

availability of other diverse datasets related to gene regulation. They develop two closely related methods that 

incorporate these diverse datasets, namely Modified Elastic Net (MEN) and Bayesian Best Subset Regression 

(BBSR). At the core of both of these methods is an ODE model that uses time-course data, where the expression of a 

target gene is modeled as a function of the time-lagged expression of its regulators. The MEN approach uses the l1 

and l2 penalties to solve an optimization problem and learn the relationships between each target and its regulators in 

the form of a sparse network, while additionally incorporating prior belief in an interaction into their optimization 

formulation. BBSR is an alternative approach to network inference that assumes a target genes expression can be 

modeled using a Gaussian distribution. Here, Bayesian Information Criterion (BIC) is used for model selection. 

2. Physical Module Networks: an integrative approach for reconstructing transcription regulation (Novershtern et 

al.) – The approach described by Novershtern et al aims to learn regulatory networks at the module level, where a 

module is defined as a set of co-expressed genes, each sharing a set of regulators. In learning the module network 

the algorithm looks for a “path” between a regulator and a target, consisting of the regulator’s protein product, 

optional protein-protein interactions, and ultimately ending in a TF known to bind the promoter of the target gene. 

These paths can be variable in length, but shorter paths whose edges are supported by prior datasets are preferred, 

resulting in a parsimonious solution. The set of selected paths are referred to as a “Physical Interaction Graph” and 

help guide the learning process towards regulatory edges that are supported by additional data beyond expression. 

3. Learning Regulatory Programs That Accurately Predict Differential Expression with MEDUSA (Kundaje et al.) –

MEDUSA learns context-specific regulatory networks by incorporating promoter sequences, transcription factor 

occupancy data, and gene expression levels. Instead of using expression data in a traditional manner such as 

clustering, MEDUSA uses discretized expression data along with sequence properties to learn for each sample 

whether the gene is up regulated or down regulated. To accomplish this task, MEDUSA uses an alternating decision 

tree (ADT). Additionally, MEDUSA has the ability to learn sequence-specific motifs as part of the learning process. 

Evaluation 

1. Greenfield et al evaluate their methods using a published Bacillus subtilis network, as well as two networks from 

the DREAM consortium: one of Escherichia coli and one created in silico. Before testing the accuracy of their 

methods against that of other methods, the authors do several experiments to test the robustness of their methods to 

parameter choices, the relationship between the correlation of regulator-target pair datasets and the confidence in a 

prediction, and the impact of prior knowledge. They then compare both of their methods to several other methods 

that do not use prior knowledge, and show that both of their methods outperform these competitor methods even 

when the prior knowledge given to them as input includes a significant amount of false positives. 

2. Norvershtern et al test their physical module network approach against an earlier module level approach that did 

not make use of a “Physical Interaction Graph”, using a synthetic network consisting of 312 genes and 7 modules 

regulated by 10 of these genes. They show that their method outperforms a traditional module network approach in 

terms of precision when tested with a varying number of modules, and state (but do not show actual values)  that 

“both models have good recall” and recall “ranges between 80% and 100%.” They also experiment with smoothing 

of input expression data, and show that their approach is more robust to the smoothing parameter. They also tested 

their approach using several yeast expression datasets, assessing the ability of their algorithm to accurately identify 

biologically relevant pathways, and testing the full extent of the model against a yeast cell-cycle network. 

3. MEDUSA was evaluated using three yeast expression datasets under diverse conditions. With an ESR dataset and 

10-fold cross-validation, MEDUSA achieved an error rate of just 13.4%, better than the error rate when MEDUSA 

was given a database of motifs instead of inferring the motifs itself. They compared this to a baseline k-nearest 

neighbors approach, and showed that the error achieved with MEDUSA was significantly lower. They also evaluate 

MEDUSA against a more diverse DNA damage dataset and achieve an error rate of 20.7%, which the authors claim 

is good considering the diversity of the dataset. A third test was done using a Hypoxia dataset, where MEDUSA had 



an error rate of 8.0%. The authors note that this was an easier dataset to make predictions with given the presence of 

replicates in the data. To show that MEDUSA was still effective in this setting, they repeat the tests without using 

promoter sequences and get an error rate of 26.0%. Additionally, they grouped replicates into the same folds using 

cross-validation so that replicates were never found in both a train and test set, and got an error rate of 23.9%. 

Novel Insights 

1. The main conclusion to be drawn from Greenfield et al is that the use of regulatory information as a prior on the 

graph structure can lead to networks that are overall more in line with the ground truth. However, since the 

evaluation was done using DREAM networks, the authors do not make mention of any novel biological predictions. 

2. Norvershtern et al apply their approach to real yeast data and identify pathways enriched for various biological 

processes. Using their inferred networks and interaction graphs, the authors are able to make several biological 

hypotheses consistent with existing literature. These include a role for STBF, “a zinc-finger with an unknown 

function,” in “induction of early meiosis genes,” and novel stress response pathways associated with “reduction of 

cell growth” starting “with the knockout of GRC1, a transcriptional activator of glycolysis genes.” The authors also 

test their method using a dataset that measured expression over a time-course during human-flu infection, and 

identify putative paths “that lead from the viral proteins to changes in expression.” This method was able to follow 

up on the original paper that identified a role for the “viral polymerase subunits NP and PB2” in perturbing host 

signal, by “identifying a pathway that includes apoptic proteins TRAF1, API1, and p53.” 

3. The analysis done with MEDUSA is rich in biological predictions, including the association of several regulators 

including Hap4 and Wtm1, among others, with DNA damage response. The authors also compare and contrast 

inferred regulators between DNA damage response and general ESR, and make special note of Msn4, noting that 

“Msn4 was predicted to be an important regulator primarily through its binding site,” whereas its expression profile 

“was only weakly predictive.” They are furthermore able to identify particular TF binding sites associated with 

DNA damage response regulation. They applied MEDUSA to yeast Hypoxia data, and were able to discover not 

only regulators associated with this condition, but also distinguish between them and general stress regulators. 

Strengths and Weaknesses 

1. An obvious strength of the method by Greenfield et al is its ability to improve predictive accuracy by 

incorporating prior regulatory information from diverse datasets. One weakness pertaining to the paper is that while 

the authors show that the method outperforms methods that do not incorporate prior knowledge, they do not 

compare their method to other methods that include prior knowledge, nor do they compare it to methods that learn 

module-based networks. It is possible that the method is in fact superior to these other methods, but the authors 

don’t make an attempt to show this. 

2. Not only does the “Physical Module Network” approach presented by Novershtern et al yield networks with 

improved accuracy, but the approach outputs a “Physical Interaction Graph” that can be used by a user to understand 

not only which genes are regulated by which regulators, but also how the regulation takes place. This could 

potentially guide biologists in performing experiments. Additionally, a module network can make up for limited 

expression data by pooling the data of those genes within the same module. However, in the case of Physical 

Module Networks, additional data is needed such as protein-protein interactions and TF occupancy data, so this 

particular module network approach is still limited to specific scenarios where various datasets are available.  

3. In addition to its ability to accurately predict up/down regulation of genes, a primary strength of the MEDUSA 

approach is its ability to learn TF binding motifs de novo. This may make the method effective with species that 

have not been heavily studied, for which motif binding sites have not been documented. Another strength lies in that 

is able to identify context specific. One weakness of the method is the discretization of gene expression data. As 

discussed by the authors, this results in loss of information regarding more subtle variation in gene expression. 

Extensions 

As is briefly discussed by Kundaje et al (and in class), I would be interested in modifying MEDUSA to use real-

valued expression levels of regulators rather than discretized up/down/normal values. The authors cite good reasons 

for discretizing the data such as reduction in noise, and straightforward application of current machine learning 

classification algorithms. However, although this is outside of my area of expertise, it seems as if since 2007 (the 

publication year of this paper) improved technologies and an increase in available expression data may have led to 

generally less noisy data, or perhaps a more rigorous quantification of the noise, making it easier to model within a 

learning framework. Additionally, as computing power continues to increase, it may be more computationally 

feasible to employ sophisticated statistical techniques to predict real-valued expression rather than discrete labels.  


