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1 Introduction

The advent of next-generation DNA and RNA sequencing technologies has revealed the
content of the genome and begun to permit its functional characterization. However, un-
derstanding how genes interact with and regulate each other remains an area of active
research. While analyses of gene co-expression [1] have elucidated modules of genes associ-
ated with disease [2], the specific regulatory interactions underlying these modules remain
poorly understood. Inferring the structure of gene regulatory networks from expression
data alone remains challenging due to the limited data provided by a single bulk RNA-
seq experiment, and approaches integrating other types of data may yield more accurate
networks [3].

Single-cell RNA-sequencing (scRNA-seq) can potentially improve the inference of reg-
ulatory networks from expression data, as a single scRNA-seq experiment yields hundreds
or thousands of data points for a given cell condition [4]. However, the application of
network inference methods to scRNA-seq data remains in its infancy, and scRNA-seq data
has been shown to display different statistical characteristics from bulk RNA-seq data [5].
More work is required to understand the limitations of existing algorithms when applied to
scRNA-seq data, and to evaluate newer algorithms designed for application to scRNA-seq.

Previously, the regulatory interactions predicted by various network inference algo-
rithms have shown limited concordance [6]. In fact, prior comparative analyses of network
inference from microarray data have found that no single algorithm out-performs its com-
petitors, and an integrative consensus prediction from an ensemble of algorithms provides
the most accurate regulatory predictions [7]. A comprehensive evaluation of a suite of net-
work inference algorithms would therefore provide insight into identifying and designing
an optimal strategy to infer regulatory networks from scRNA-seq data.

I propose performing a comparative analysis of a subset of existing network inference
algorithms to appraise their relative performance on scRNA-seq data, focusing on methods
which only incorporate expression data.

2 Approach

I plan to begin with comparing MERLIN [8], PIDC [9], and SILGMM [10]. If possible, I
will extend my analysis to include other methods (NOTE: TBD based on discussions with
Sushmita/Sunnie Grace/Viswesh).

Possible scRNA-seq datasets to analyze could include some of the following. (NOTE:
final selection of datasets will also be based on our group discussion. I think it may make
sense to reflect the species/cell types/scRNA technologies the lab is planning to analyze.)

1. Mouse embryonic stem cell (Fluidigm, n=704 cells) [11]
2. Human lung epithelial cell (Fluidigm, n=80 cells) [12]
3. Human peripheral blood mononuclear cell (10X, n=68,000 cells) [13]
4. Mouse neuron (10X v2, n=9,128 cells) [14]
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5. Human breast epithelial cell (10X, n=24,646 cells) [15]
Prior efforts to compare network inference methods by the DREAM consortium have

relied on simulated benchmark networks [16]. While simulated data theoretically offers a
gold standard, it frequently makes simplifying assumptions that fail to test the limits of
an algorithm on real biological data. A simple approach to evaluating the concordance of
two algorithms would be to take the Jaccard similarity between their reported edges. A
possible approach to evaluating the standalone performance of an algorithm would be to
measure its sensitivity towards known, experimentally validated gene interactions, such as
those reported in the TRRUST database [17] or provided by Gerstein et al. 2012 [18] or
Neph et al. 2012 [19].

3 Significance

This project is of importance due to the opportunity that scRNA-seq presents to poten-
tially reliably infer regulatory networks from expression data. While approaches integrat-
ing other types of data, such as protein-protein interactions [20] or protein binding sites
experimentally identified with chromatin immunoprecipitation [21], have demonstrated an
improvement in recapitulating regulatory network structure for a given cell condition, these
methods have been less effective than non-prior-based algorithms at subsequently predict-
ing regulatory interactions in a novel condition [21]. Further, omitting priors reduces the
required complexity and cost of a network inference project by eliminating the need to per-
form complementary experiments to generate the priors. Characterizing the performance
of existing network inference algorithms on scRNA-seq data will begin to illuminate the
adaptations necessary to reliably predict regulatory interactions from expression data, and
inter-algorithm comparisons may provide insight into developing a consensus approach.

The two primary results I anticipate obtaining from this project are an assessment of the
algorithms’ concordance when deployed on scRNA-seq data, and a measure of sensitivity
towards recapitulating known regulatory interactions. I hope to generate some insight
into modifications to the implemented algorithms that could improve network inference
accuracy, including potentially outlining a framework for jointly integrating their results
into a consensus network prediction. If possible, I would also like to evaluate how well the
networks inferred by these algorithms in bulk RNA-seq data are replicated in scRNA-seq
data, based on publicly available bulk RNA-seq data from equivalent species and cell types.

From this project I expect to gain experience working with single-cell RNA-seq data,
familiarity with the theory underlying popular network inference algorithms and practical
exposure to deploying them on real data, and experience in comparative analyses of network
inference results. In addition, I hope to begin learning the limits of these methods and
developing strategies to improve their shortcomings or build a consensus from their results.
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