1 |
9-Sep |
Class overview |
|
|
ppt pdf |
|
Profs. Roy/Gitter |
2 |
14-Sep |
Background |
Graph theory |
Molecular networks |
ppt pdf |
(1) Life and its molecules; (2) Topology of molecular networks |
Prof. Roy |
|
16-Sep |
|
Probability theory |
|
pptx pdf |
|
Prof. Gitter |
3 |
21-Sep |
Representing and learning networks from data |
Bayesian network |
Gene network inference |
ppt pdf |
(1) Markowetz and Spang (optional) (2) Friedman et al (3) Sparse candidate |
Prof. Roy |
|
23-Sep |
|
Dependency networks |
Gene network inference |
ppt1 pdf1 ppt2 pdf2 |
(1) Module networks (2) GENIE3 |
Prof. Roy |
4 |
28-Sep |
|
Incorporating priors in Bayesian networks |
Integrative network inference |
ppt pdf |
(1) Werhli et al (2) Cancer signaling and DBN |
Prof. Roy |
|
30-Sep |
|
Incorporating priors in Dependency networks |
Integrative network inference |
ppt pdf |
(1) Inferelator (2) (optional) iRafNet |
Prof. Roy |
5 |
5-Oct |
|
Network inference with single cell data |
|
ppt pdf |
(1) PIDC; (2)SCENIC |
Prof. Roy |
|
7-Oct |
Context-specificity and dynamics of networks |
Dynamic models & non-stationary DBNs |
Representing dynamics in molecular networks/development |
pptx pdf |
nsDBN |
Prof. Gitter |
6 |
12-Oct |
|
I-O Hidden Markov Models |
Integrating TF-DNA interactions with time-series expression |
pptx pdf notes |
DREM |
Prof. Gitter |
|
14-Oct |
|
I-O Hidden Markov Models |
|
|
|
Prof. Gitter |
7 |
19-Oct |
|
Multi-task learning & GGMs |
Tissue-specific networks |
pptx pdf |
GNAT |
Prof. Gitter |
|
21-Oct |
Deep learning in network biology |
Network embedding and representation learning |
Gene function prediction |
pptx pdf |
(1) Representation learning review (2) node2vec |
Prof. Gitter |
8 |
26-Oct |
|
Graph neural networks 1 |
Protein-protein and protein-ligand interactions |
pptx pdf |
(1) Distill intros (2) Wu et al |
Prof. Gitter |
|
28-Oct |
|
Graph neural networks 2 |
Drug discovery |
pptx pdf |
|
Prof. Gitter |
9 |
2-Nov |
|
Graph generation |
Synthetic biology |
pptx pdf |
MolGAN |
Prof. Gitter |
|
4-Nov |
Topological properties of graphs |
Degree distribution, modularity motifs |
Design principles of biological networks |
pptx pdf |
(1) Barabasi and Oltvai review (2) Girvan-Newman Algorithm |
Prof. Roy |
10 |
9-Nov |
|
Spectral and Louvain clustering |
Finding modules in networks |
pptx pdf |
(1) Louvain clustering (2) Module detection challenge |
Prof. Roy |
|
11-Nov |
|
Dynamic network modules |
|
pptx pdf |
|
Prof. Roy |
11 |
16-Nov |
Graph alignment |
Spectral methods for alignment |
Alignment of Protein-protein interaction networks |
pptx pdf |
(1) PathBLAST (2) IsoRank |
Prof. Roy |
|
18-Nov |
|
Matrix factorization based alignment |
Alignment of Protein-protein interaction networks |
pptx pdf |
FUSE |
Prof. Roy |
12 |
23-Nov |
|
Graph alignment for single cell datasets |
Integrating scOmics data |
pptx pdf |
(1) SCANORAMA (2) LIGER |
Prof. Roy |
|
25-Nov |
Thanksgiving |
|
|
|
|
|
13 |
30-Nov |
Network-based interpretation and integration of datasets |
Graph diffusion and random walks |
Disease gene prediction/gene prioritization |
pptx pdf |
GeneWanderer |
Prof. Gitter |
|
2-Dec |
|
Graph diffusion |
Interpreting cancer mutations |
pptx pdf |
HotNet |
Prof Gitter |
14 |
7-Dec |
|
Steiner forest/integer programs |
Data integration |
pptx pdf |
(1) Omics Integrator (2) ILP |
Prof. Gitter |
|
9-Dec |
Projects |
|
|
|
|
|
15 |
14-Dec |
Projects |
|
|
|
|
|